Anleitung für eine Simulation zur Wärmeströmung mit "Energy2D"

In diesem Fall ist es ratsam, auf ein vorgefertigtes Beispiel zu verzichten und den entsprechenden Aufbau selbst zu erstellen.

Nach dem Öffnen der Software ist es empfehlenswert, die neue Datei unter "File" direkt abzuspeichern und diesen Vorgang während des Erstellens der Szene immer zu wiederholen.

Die Ansicht sollte wie auch im vorherigen Beispiel zur Wärmeleitung angepasst werden, um die Anzahl der dargestellten Informationen zu beschränken.

View Options				×
General Visualization				
Isotherm	Velocity	Streamlines	Heat Flux Lines	
Heat Flux Arrows	Tickmarks	Graph	See-Through	
Smooth	Clock	Grid	View Factor Lines	
Color Palette	Logo	Control Panel		
			O	ĸ

Copy Cut Paste Copy Image	Strg+C Strg+X Strg+V Strg+Alt+C	
Cut Paste Copy Image	Strg+X Strg+V Strg+Alt+C	
Paste Copy Image	Strg+V Strg+Alt+C	
Copy Image	Strg+Alt+C	
Properties		
View Options		
Sensor Data		
Task Manager		
Preferences		
	fask Manager Preferences	ask Manager Preferences

Im nächsten Schritt gilt es die Eigenschaften des umgebenden Mediums zu verändern. Mit einem Rechtsklick auf den Hintergrund gelangt man unter "Properties" auf die Eigenschaften des Mediums.

Um das Aufsteigen der erwärmten Luft einer Kerzenflamme anschaulich zu simulieren,

stellt man den Wert für die Konduktivität ("Conductivity") von 0,025 auf 1 und den Wert für die kinematische Viskosität ("kinematic viscosity") von 0,00001568 auf 0,000001568.

DieEinstellungunter"buoyancyapproximation"(NäherungdesAuftriebswertes)mussvon "column average"(Spaltenmittelwert)auf"all-cellavarage"

Model Properties		×
General Medium Sunlight P	article Boundary	
Background temperature	0	°C
Conductivity	1	W/(m·°C)
Specific heat	1012	J/(kg+°C)
Density	1.204	kg/m ³
Kinematic viscosity	0.000001568	m²/s
Thermal expansion coefficient	0.00025	m/(s².°C)
Buoyancy approximation	All-cell average 🗸 🗸 🗸	
Gravity type	Uniform 🗸	
		OK Cancel

(Durchschnitt aus allen Zellen) verändert werden.

Die Kerzenflamme erstellt man, indem man unter "Insert" ein "Particle" in die Szene lädt.

Drückt man mit der rechten Maustaste auf diesen Partikel, kann man in den Eigenschaften den Radius (auf ca. 0,1 m) und die Temperatur (auf ca. 50°C) verändern. Um zu verhindern, dass sich dieser Partikel durch die voreingestellte Gravitation bewegt, stellt man unter "movable" die Option "false" ein. Nachdem man die Szene erneut abgespeichert hat, kann man die Simulation starten ("Run"). Die aufsteigende warme Luft wird dargestellt.

Particle (#0) Properties ×	
Unique ID:	
Label:	
Mass (kg):	0.1
Radius (m):	0.1
 Temperature (°C):	50
 Rx (m):	3.8
Ry (m):	6
Vx (m/s):	0
Vy (m/s):	-0
θ (°):	0
ω (°/s):	0
Color:	•
Velocity Color:	—
Movable:	false 🗸
Draggable by User:	true 🗸
	OK Cancel

Der beschriebene Umgang zur Darstellung der Wärmeströmung mit der Simulationssoftware ist im folgenden Video zu sehen:

https://youtu.be/2dh6O__LJ_c